
DOI 10.1007/s100529800960
Eur. Phys. J. C 7, 177–183 (1999) THE EUROPEAN

PHYSICAL JOURNAL C
c© Springer-Verlag 1999

q-deformed Lorentz-algebra in Minkowski phase space

M. Rohregger1, J. Wess2,3

1 Physiologisches Institut der Ludwig-Maximilians-Universität, Pettenkoferstr. 12, D-80336 München
2 Sektion Physik der Ludwig-Maximilians-Universität, Theresienstr. 37, D-80333 München
3 Max-Planck-Institut für Physik, (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München
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Abstract. In the present paper we show that the Lorentz algebra L as defined in [5] is isomorphic to an
algebra Û closely related to a q-deformed SUq(2) ⊗ SUq(2) algebra. On this algebra Û we define a Hopf
algebra structure and show its action on q-spinor modules. This algebra is related to the q-deformed
Minkowski space algebra by a non invertible factorisation.

Introduction

The q-deformed Lorentz [4,5] and Poincare algebra [6]
has been studied in previous papers. The concept of non-
commutative coordinates in a four-dimensional Minkowski
space has been introduced in [9,10], based on a q-Lorentz
group-covariant q-deformation of the Heisenberg algebra.
For the very definition of this algebra orbital q-deformed
angular momentum as well as a scaling operation had to
be introduced.

As usual, orbital angular momentum restricts the rep-
resentations as it has no spinor representations. In the
q-deformed version of the algebra it is convenient to in-
clude the Casimir operator in the defining relations of the
algebra. A restriction of the representations can be ex-
pressed through conditions on the Casimir operators and
thus leads to a non-invertible factorization of the algebra.
This factorization has been studied in [10]. For this pur-
pose a very convenient definition of the q-Lorentz algebra
has been found that exhibits the close relation of the al-
gebra to a deformed SUq(2) ⊗ SUq(2) algebra.

It seems natural to start from this definition of the
q-deformed Lorentz algebra and we shall do so in this pa-
per. We shall show that there exists a Hopf algebra iso-
morphism between this algebra and the Lorentz algebra
defined in [4,5]. Then we study the four-vector-like mod-
ules of the new algebra, relate them to the q-Poincare
algebra and finally to the q-deformed Minkowsky space
algebra [10]. It clearly shows the module structure of the
Minkowski space as a q-Lorentz algebra module, whereas
the previous treatment was based on a q-Lorentz group co-
module structure. This can now be generalized to spinorial
modules as well.

Correspondence to: Julius Wess

1 q-Lorentz algebra

The q-Lorentz algebra can be defined in close analogy to
the SUq(2) × SUq(2) splitting of SO(4) if we use eight
generators [3], this follows Pauli’s treatment of SO(3, 1)
[3].

The SUq(2) algebra can be defined with four genera-
tors [9,10]:

εBC
ALCLB = − 1

q2
WLA (1.1)

q6λ2(L ◦ L) = W 2 − 1

The ε-symbol is the q-deformed antisymmetric tensor and
the scalar product ◦ is defined with the q-deformed metric
gAB . Both are given in the Appendix. λ = q − 1

q .
This version of SUq(2) is related to the standard ver-

sion by the transformation:

T+ := q
5
2 [2]

1
2 τ

1
2L+ (1.2)

T− := −q 7
2 [2]

1
2 τ

1
2L−

(τ3)− 1
2 := W − q3λL3,

where τ
1
2 is the inverse of W − q3λL3.

For τ3, T+, T− the standard q-commutation relation
follows from (1.1).

τ3T+ = q−4T+τ3 (1.3)
τ3T− = q4T−τ3

T+T− = q2T−T+ + qλ−1(1 − τ3)

This version of SUq(2) can be generalized to the q-
Lorentz algebra:

εCB
AR̂BR̂C =

1
q[2]

Û R̂A (1.4)
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εCB
AŜBŜC = − 1

q[2]
Û ′ŜA

R̂AŜB = q2R̂AB
CDŜ

CR̂D

q4[2]2λ2R̂ ◦ R̂ = Û2 − 1

q4[2]2λ2Ŝ ◦ Ŝ = Û ′2 − 1

The R̂-matrix as well as the definition of the [n] symbol
can be found in the Appendix.

The elements Û , Û ′ are central, which is consistent
with the last two equations in (1.4). They are the two
Casimir operators of the q-Lorentz algebra and the last
two equations in (1.4) reduce the number of independent
generators to the six generators R̂A and ŜA.

It is only the sign in the R̂R̂ relations that differs from
the SUq(2) relations (1.1). This is due to the non-compact
nature of SO(3, 1). For the R̂Ŝ relations covariance and
the Poincare-Birkhoff-Witt property demands the above
structure. The algebra (1.4) is compatible with the conju-
gation properties

Û = Û ′ (1.5)

R̂A = −gABŜ
B

ŜA = −gABR̂
B

The algebraic relations (1.4) and (1.5) define a q-
Lorentz algebra. To verify this statement we first show
that the seven-generator version of the q-Lorentz algebra
[5], which we shall call the L-algebra, can be mapped into
our algebra which we shall call the Û-algebra. The algebra
morphism Ψ : L → Û is analogous to the morphism given
in (1.2). We first identify the “diagonal” SUq(2) part that
is isomorphic to the algebra (1.1):

L̂A =
[2]2

q

(
Û ŜA − Û ′R̂A + q2λ[2]εCB

AR̂BŜC
)

(1.6)

Ŵ = Û Û ′ − q6λ2[2]2
(
R̂ ◦ Ŝ

)

This is a generalization of the algebra automorphism found
in [10] and was first found in [12].

From (1.2) follows the identification of the SUq(2) part
of Ψ : L → Û :

T+ := q
5
2 [2]

1
2 τ̂

1
2 L̂+ (1.7)

T− := −q 7
2 [2]

1
2 τ̂

1
2 L̂−

τ3 := (τ̂
1
2 )2

where τ̂
1
2 is the inverse of Ŵ − q3λL̂3. For the remaining

four generators of L we found:

T 2 := q
1
2 [2]

3
2 R̂+ (1.8)

τ1 := −q2λ[2]R̂3 − Û

S1 := −q 3
2 [2]

3
2 τ̂

1
2 Ŝ−

σ2 := τ̂
1
2 (q2λ[2]Ŝ3 − Û ′)

The algebraic relations of L as they were given in [5]
follow from the relations (1.4). This establishes the algebra
morphism of Ψ : L → Û . It also preserves the conjugation
properties.

The inverse of this morphism can also be found. For
Φ: Û → L we have:

R̂+ := q− 1
2 [2]−

3
2T 2 (1.9)

R̂− := −q− 5
2 [2]−

3
2

(
qS1 + τ1T−)

R̂3 :=
λ

q2[2]2
T 2T− +

1
qλ[2]2

(
σ2 − τ1)

Û := −λ2

[2]
T 2T− − q

[2]
σ2 − 1

q[2]
τ1

Ŝ− := −q− 3
2 [2]−

3
2

(
τ3)− 1

2 S1 (1.10)

Ŝ+ := q− 3
2 [2]−

3
2

(
τ3)− 1

2
(
qτ3T 2 − σ2T+)

Ŝ3 :=
(
τ3)− 1

2

(
λ

[2]2
S1T+ +

1
q3λ[2]2

(
σ2 − τ3τ1))

Û ′ := (τ3)− 1
2

(
q2λ2

[2]
S1T+ − q

[2]
σ2 − 1

q[2]
τ3τ1

)

The detailed verification that this is the desired *alge-
bra homomorphism Φ is tedious.

2 Hopf algebra structure

For L a Hopf algebra structure was defined in [5]. It is
possible to carry this structure on Û . To write the comul-
tiplication in a more compact form we define the elements
ρ̂ and σ̂ of Û :

ρ̂ = q2λ[2]R̂3 + Û (2.11)

σ̂ = q2λ[2]Ŝ3 − Û ′

First the counit ε; we also list ε(ρ̂) and ε(σ̂):

ε(R̂+) = 0 (2.12)

ε(R̂−) = 0

ε(R̂3) = 0

ε(Û) = −1
ε(ρ̂) = −1

ε(Ŝ+) = 0 (2.13)

ε(Ŝ−) = 0

ε(Ŝ3) = 0

ε(Û ′) = −1
ε(σ̂) = 1

The coproduct ∆:

∆
(
R̂+

)
= σ̂ ⊗ R̂+ − R̂+ ⊗ ρ̂ (2.14)
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∆
(
R̂−

)
=

(
τ̂

1
2 ⊗ τ̂

1
2

) [
q

[2]
ρ̂L̂− ⊗ τ̂− 1

2 ρ̂

+Ŝ− ⊗
(
σ̂ − q5λ2[2]2R̂+L̂−

)

+ρ̂⊗
(
q

[2]
ρ̂L̂− − Ŝ−

)

−q3λ2[2]2Ŝ−L̂− ⊗ τ̂− 1
2 R̂+

]

∆
(
R̂3

)
= −R̂3 ⊗ ρ̂+ τ̂

1
2 σ̂ ⊗ R̂3

+q3λ[2]Ŝ− ⊗ R̂+

−q3λ[2]τ̂
1
2 R̂+ ⊗ R̂−

−q2λτ̂ 1
2 σ̂L̂− ⊗ R̂+

∆
(
Û

)
= −Û ⊗ ρ̂+ q3λ2[2]2Ŝ− ⊗ R̂+

−q2λ[2]τ̂
1
2 σ̂ ⊗ R̂3

+q5λ2[2]2τ̂
1
2 R̂+ ⊗ R̂−

+q4λ2[2]τ̂
1
2 σ̂L̂− ⊗ R̂+

∆ (ρ̂) = −ρ̂⊗ ρ̂+ q4λ2[2]3Ŝ− ⊗ R̂+

∆
(
Ŝ−

)
= Ŝ− ⊗ σ̂ − ρ̂⊗ Ŝ− (2.15)

∆(Ŝ+) = (τ̂
1
2 ⊗ τ̂

1
2 )

[
− q

[2]
σ̂L̂+ ⊗ τ̂− 1

2 σ̂

+R̂+ ⊗
(
q5λ2[2]2Ŝ−L̂+ − ρ̂

)

+σ̂ ⊗
(
R̂+ − q

[2]
σ̂L̂+

)

+q7λ2[2]2R̂+L̂+ ⊗ τ̂− 1
2 Ŝ−

]

∆
(
Ŝ3

)
= Ŝ3 ⊗ σ̂ − τ̂

1
2 ρ̂⊗ Ŝ3

−qλ[2]R̂+ ⊗ Ŝ−

+qλ[2]τ̂
1
2 Ŝ− ⊗ Ŝ+

+q4λτ̂
1
2 ρ̂L̂+ ⊗ Ŝ−

∆
(
Û ′

)
= Û ′ ⊗ σ̂ + q5λ2[2]2R̂+ ⊗ Ŝ−

−q2λ[2]τ̂
1
2 ρ̂⊗ Ŝ3 +

+q3λ2[2]2τ̂
1
2 Ŝ− ⊗ Ŝ+ +

+q6λ2[2]τ̂
1
2 ρ̂L̂+ ⊗ Ŝ−

∆ (σ̂) = σ̂ ⊗ σ̂ − q4λ2[2]3R̂+ ⊗ Ŝ−

Finally the antipode:

S
(
R̂+

)
= −q2τ̂ 1

2 R̂+ (2.16)

S
(
R̂−

)
= −Ŝ− − 1

q[2]
τ̂

1
2 L̂−σ̂

S
(
R̂3

)
= − 1

q2λ[2]
Û − 1

q2λ[2]
τ̂

1
2 σ̂

S
(
Û

)
= Û

S (ρ̂) = −τ̂ 1
2 σ̂

S
(
Ŝ+

)
= −R̂+ − q3

[2]
τ̂

1
2 L̂+ρ̂

S
(
Ŝ−

)
= − 1

q2
τ̂

1
2 Ŝ−

S
(
Ŝ3

)
=

1
q4λ[2]

Û ′ − 1
q2λ[2]

τ̂
1
2 ρ̂

S
(
Û ′

)
= Û ′

S (σ̂) = −τ̂ 1
2 ρ

This establishes Û as a Hopf algebra.

3 Û module structures

In [5] a spinor module over the Hopfalgebra L was intro-
duced. Since the Hopfalgebra Û is isomorphic to L as we
have seen in the previous section an equivalent action of Û
on the spinor module can be calculated. The results are:

R̂+x = xR̂+ − q− 1
2 [2]−

3
2 yρ̂ (3.17)

R̂+x = qxR̂+

R̂+y = yR̂+

R̂+y =
1
q
yR̂+

R̂−x = xR̂− (3.18)

R̂−x =
1
q
xR̂− − λq− 1

2 [2]
1
2 yR̂3

R̂−y = yR̂− + q− 7
2 [2]−

3
2xρ̂

R̂−y = qyR̂−

R̂3x =
2
[2]
xR̂3 − 1

q[2]2
xÛ − λq

3
2 [2]−

1
2 yR̂− (3.19)

R̂3x = xR̂3 − λq− 1
2 [2]

1
2 yR̂+

R̂3y =
2
[2]
yR̂3 +

1
q3[2]2

yÛ + λq− 3
2 [2]−

1
2xR̂+

R̂3y = yR̂3

Ûx =
[4]
[2]2

xÛ − qλ2xR̂3 + λ2q
7
2 [2]

1
2 yR̂− (3.20)

Ûx = xÛ

Ûy =
[4]
[2]2

yÛ + q3λ2yR̂3 − λ2q
1
2 [2]

1
2xR̂+

Ûy = yÛ

ρ̂x =
1
q
xρ̂ (3.21)

ρ̂x = xρ̂− λ2q
3
2 [2]

3
2 yR̂+

ρ̂y = qyρ̂
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ρ̂y = yρ̂

Ŝ+x = qxŜ+ − λq
3
2 [2]

3
2 yŜ3 (3.22)

Ŝ+x = xŜ+

Ŝ+y =
1
q
yŜ+

Ŝ+y = yŜ+ + q− 3
2 [2]−

3
2xσ̂

Ŝ−x =
1
q
xŜ− (3.23)

Ŝ−x = xŜ− − q− 5
2 [2]−

3
2 yσ̂

Ŝ−y = qyŜ−

Ŝ−y = yŜ−

Ŝ3x = xŜ3 − λq
3
2 [2]

1
2 yŜ− (3.24)

Ŝ3x =
2
[2]
xŜ3 − 1

q3[2]2
xÛ ′ − λq− 1

2 [2]−
1
2 yŜ−

Ŝ3y = yŜ3

Ŝ3y =
2
[2]
yŜ3 +

1
q[2]2

yÛ ′ + λq
1
2 [2]−

1
2xŜ−

Û ′x = xÛ ′ (3.25)

Û ′x =
[4]
[2]2

xÛ ′ − q3λ2xŜ3 − λ2q
3
2 [2]

1
2 yŜ−

Û ′y = yÛ ′

Û ′y =
[4]
[2]2

yÛ ′ + qλ2yŜ3 + λ2q
5
2 [2]

1
2 yŜ−

σ̂x = xσ̂ − λ2q
7
2 [2]

1
2 yŜ− (3.26)

σ̂x = qxσ̂

σ̂y = yσ̂

σ̂y =
1
q
yσ̂

We know how the algebra L acts on module spaces.
Starting from spinor modules all the finite dimensional
modules can be constructed. We are interested in the
Minkowski module representing four-dimensional space
time or the energy momentum variables P a as well. The
L module structure implies a Û module.

The algebraic structure of the four-vector space com-
patible with the comodule structure is:

P 0PA = PAP 0 (3.27)

εCB
APBPC = −qλP 0PA

On this space, Û acts as follows:

R̂AP 0 =
[4]
[2]2

P 0R̂A (3.28)

− 1
q[2]2

PAÛ +
λ

q[2]
εCB

APBR̂C

R̂APB =
1
q[2]

[
q2[2]PAR̂B − λεC

ABP 0R̂C

− λgAB(P ◦ R̂) − 1
q2[2]

gABP 0Û

−2
q
εC

ABεST
CPT R̂S +

1
q2[2]

εC
ABPCÛ

]

ŜAP 0 =
[4]
[2]2

P 0ŜA (3.29)

− 1
q3[2]2

PAÛ ′ +
λ

q[2]
εCB

APBŜC

ŜAPB =
1
q[2]

[
[2]PAŜB − λεC

ABP 0ŜC

+ q2λgAB(P ◦ Ŝ) − 1
[2]
gABP 0Û ′

−2
q
εC

ABεST
CPT ŜS − 1

q2[2]
εC

ABPCÛ ′
]

ÛP 0 =
[4]
[2]2

P 0Û − qλ2(P ◦ R̂) (3.30)

ÛPA =
[4]
[2]2

PAÛ − q3λ2P 0R̂A − qλ2εCB
APBR̂C

Û ′P 0 =
[4]
[2]2

P 0Û ′ − q3λ2(P ◦ Ŝ) (3.31)

Û ′PA =
[4]
[2]2

PAÛ ′ − qλ2P 0ŜA + qλ2εCB
APBŜC

These relations are consistent with the conjugation prop-
erty:

P 0 = P 0, PA = gABP
B (3.32)

The invariant “length” of a four-vector is:

P 2 = −P 0P 0 + P ◦ P =: ηabP
aP b (3.33)

This defines the four-metric ηab. Invariance means:

AP 2 = P 2A, for A ∈ Û (3.34)

This again justifies to call the Û algebra q-Lorentz algebra.
It is useful to know the action of the L̂ algebra defined

in (1.6) on P a:

L̂APB = gAB(P ◦ L̂) (3.35)

− 1
q4
εC

ABPCŴ − 1
q2
εCM

AεN
CBPM L̂N

ŴPA =
(
q4 − q2 + 1

q2

)
PAŴ +

(
q2 − 1

)2
εBC

APCL̂B

and

L̂AP 0 = P 0L̂A (3.36)

ŴP 0 = P 0Ŵ

Equation (3.36) shows that the 0-component of a four-
vector is left invariant by L̂. This again justifies to call
them rotations. It follows from (3.36) and(3.35) that
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L̂A(P ◦ P ) = (P ◦ P )L̂A (3.37)

Ŵ (P ◦ P ) = (P ◦ P )Ŵ

The Hopf algebra Û and its module P a can be viewed
as a q-deformation of the Poincare algebra. Together, it
does not have a Hopf algebra structure, however.

Of special interest is a Û model that is generated by
two four-vector P a and Xa whose algebra can be con-
sidered as a q-deformation of the Heisenberg algera. Its
structure has been studied in detail in [10].

q-deformed Heisenberg algebra:

P aXb − 1
q2

(
R−1

II

)ab

cd
XcP d (3.38)

= − i

2
Λ− 1

2
{(

1 + q4
)
ηabU + q2

(
1 − q4

)
V ab

}

The quantities (R−1
II )ab

cd and ηab are defined in the
Appendix. The element Λ− 1

2 is a “scaling” operator:

Λ− 1
2Xa = qXaΛ− 1

2 (3.39)

Λ− 1
2P a =

1
q
P aΛ− 1

2

Λ
1
2 = q4Λ− 1

2

The element V ab is a q-deformed angular momentum
in the four-dimensional Xa plane. It has a Pauli decom-
position:

V A0 = RA + q2SA (3.40)

V 0A = −q2RA − SA

V AB = εC
AB

(
RC − SC

)
V 00 = 0

RA = −gABS
B SA = −gABR

B

The element U is related to the Casimir operator:

U2 − 1 =
1
2
q4[2]2λ2 (R ◦R+ + S ◦ S) (3.41)

U = U

As is always the case, the representations of angular
momentum are restricted. Thus RA and SA will not gen-
erate a full q-Lorentz algebra.
In [10] it was shown that this restriction leads to the equa-
tion

R ◦R = S ◦ S (3.42)

From the point of view of our Û algebra, the restriction is

Û = Û ′ (3.43)

This, due to (1.4), leads to

R̂ ◦ R̂ = Ŝ ◦ Ŝ (3.44)

and due to (3.28) it leads to:

0 = gABP
A

(
RB − q2SB

)
(3.45)

0 = P 0 (
SA − q2RA

) − εCB
APB(RC + SC)

These are exactly the relations that were found in [10]
and that generalize the fact that angular momentum is
orthogonal to the momentum and to the coordinates. The
statement for the coordinators is true here as well, P a can
be replaced by Xa in (3.45).

It should be noted that the factorization χ (3.43) is
an algebra morphism from Û to an algebra that we shall
call U , but it is not a Hopf algebra morphism, ∆(Û) and
∆(Û ′) do not coincide.

Our result can be represented by the following com-
muting diagramme of algebra morphisms:

Û

U

L�

?

�
�

�
�

�
��	

Ψ

χ ψ

� �

?

Φ = Ψ−1

A Metric, ε-tensor, R-martices

In the present paper we used the conventions of [10].
q-numbers are defined as:

[n] :=
qn − q−n

q − q−1 (A.46)

The nonvanishing entries of the q-deformed metric ten-
sor are:

gAB : g33 = 1, (A.47)

g+− = −q, g−+ = −1
q
;

gAB : g33 = 1, (A.48)

g+− = −q, g−+ = −1
q
;

X ◦ Y = gABX
AY B

= X3Y 3 − qX+Y − − 1
q
X−Y +

XA = gABX
B , XA = gABXB

The nonvanishing entries of the q-deformed ε- tensor are:

εCB
A : ε333 = 1 − q2, (A.49)



182 M. Rohregger, J. Wess: q-deformed Lorentz algebra

ε+−3 = q, ε−+
3 = −q, ε+3

+ = 1,
ε3+

+ = −q2, ε3−− = 1, ε−3
− = −q2.

Raising and lowering of an index (shown only for the mid-
dle index, valid for the other indices as well) is done ac-
cording to:

εC
AB = gADεCD

B (A.50)

εCD
B = gDAεC

AB

Properties of the ε-tensor:

εAB
C = gXCεXAB (A.51)

εABC = gXAεBC
X

εABXεCDX = εX
ABεCD

X

= εXABεXCD

εABXεCD
X = q2gDAgCB − q2gBAgDC + εAXDεBC

X

εC
ABεBA

D = (1 + q4)δD
C

εABDεBAC = (1 + q4)δD
C

gBAεABX = 0, gABεABX = 0

εAB
C = εBAXgXC (A.52)

gAB = gAB

The Euclidean R̂-matrix:

R̂AB
CD = δA

Cδ
B
D − 1

q4
εX

ABεDC
X − q2 − 1

q4
gABgCD (A.53)

q-deformed Minkowski metric:

ηab : η00 = −1, ηAB = gAB , (A.54)
η0A = 0, ηA0 = 0;

ηab : ηab = ηab;

X • Y = ηabX
aY b = −X0Y 0 +

+X3Y 3 − qX+Y − − 1
q
X−Y +

Xa = ηabX
b, Xa = ηabXb

More relations can be found in [10] [11].

B Useful relations in Û
We give some relations which are needed for explicit calcu-
lations. Equivalent relations in U are obtained by setting
Û ′= Û . For more relations see [11].

ẐA = εCB
AR̂BŜC (B.55)

= − 1
q2
εCB

AŜBR̂C

R̂ ◦ Ŝ =
1
q4
Ŝ ◦ R̂ (B.56)

R̂ ◦ Ẑ =
1

q2 + 1
Û

(
R̂ ◦ Ŝ

)

Ŝ ◦ Ẑ =
q2

q2 + 1
Û ′

(
R̂ ◦ Ŝ

)

Ẑ ◦ R̂ = − q2

q2 + 1
Û

(
R̂ ◦ Ŝ

)

Ẑ ◦ Ŝ = − 1
q2 + 1

Û ′
(
R̂ ◦ Ŝ

)

R̂AŜB = q2ŜAR̂B (B.57)

+εC
ABẐC − q2 − 1

q2
gAB

(
Ŝ ◦ R̂

)

ŜAR̂B =
1
q2
R̂AŜB − 1

q2
εC

ABẐC +
(
q2 − 1

)
gAB(R̂ ◦ Ŝ)

εCB
AR̂BẐC = q2ŜA

(
R̂ ◦ R̂

)
(B.58)

−q2R̂A
(
R̂ ◦ Ŝ

)
+

1
q2 + 1

Û ẐA

εCB
AŜBẐC = −R̂A

(
Ŝ ◦ Ŝ

)
+ ŜA(Ŝ ◦ R̂) − 1

q2 + 1
Û ′ẐA

εCB
AẐBR̂C = −

(
R̂ ◦ R̂

)
ŜA +

(
Ŝ ◦ R̂

)
R̂A +

1
q2 + 1

Û ẐA

εCB
AẐBŜC = q2

(
Ŝ ◦ Ŝ

)
R̂A − q2

(
R̂ ◦ Ŝ

)
ŜA

− 1
q2 + 1

Û ′ẐA

R̂A
(
R̂ ◦ Ŝ

)
=
q2 − 1
q4

(
R̂ ◦ R̂

)
ŜA (B.59)

+
1
q2

(
R̂ ◦ Ŝ

)
R̂A +

1
q4(q2 + 1)

Û ẐA

ŜA
(
R̂ ◦ Ŝ

)
= −q2 − 1

q2

(
Ŝ ◦ Ŝ

)
R̂A + q2

(
R̂ ◦ Ŝ

)
ŜA

+
1

q2 (q2 + 1)
Û ′ẐA
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deformed Poincaré algebra, Commun. Math. Phys. 150,
495 (1992)

7. W. Zippold, Hilbertspace representation of an algebra of
observables for q-deformed relativistic quantum mechan-
ics, Z. Phys. C 67, 681 (1995)

8. W. Weich, Quantum mechanics with SOq(3) symmetry,
LMU-TPW 1993-27, preprint

9. A. Lorek, q-deformierte Quantenmechanik und induzierte
Wechselwirkungen, Thesis, LMU München, Lehrstuhl
Prof. J. Wess, Mai 1995

10. A. Lorek, W. Weich, J. Wess, Non-commutative Euclidean
and Minkowski stuctures, Z. Phys. C 76, 375–386 (1997)

11. M. Rohregger, q-deformierte Lorentz-Algebra im Phasen-
raum, Diplomarbeit, LMU München, Lehrstuhl Prof. J.
Wess, August 1997

12. B.L. Cerchiai, Hilbert space representation of a q-deformed
Minkowski algebra, Thesis, LMU München, Lehrstuhl
Prof. J. Wess, December 1998


